

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Core Mathematics 2R (6664_01R)

www.mymainscloud.com

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038458
All the material in this publication is copyright
© Pearson Education Ltd 2014

MMN. MV. MANNATIS CLOUD COM

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

MAN. TANNAHASCIOUS CON.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or AG answer given
- or d... The second mark is dependent on gaining the first mark
- aliter alternative method
- aef any equivalent form
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

implii) unicon

- 5. For misreading which does not alter the character of a question or materially simplifit, deduct two from any A or B marks gained, in that part of the question affected.
- 6.7. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 8. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

ant old con

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

	nn	W. My Mains clou
Question Number	Scheme	Maths
	$\left(1+\frac{3x}{2}\right)^8$	
	Both terms correct as printed (allow $12x^1$ but not 1^8)	B1
1.		M1
	+ $63x^2 + 189x^3 +$ A1: Either $63x^2$ or $189x^3$ A1: Both $63x^2$ and $189x^3$	A1A1
	Terms may be listed but must be positive	
		[4] Total 4
	Note it is common not to square the 2 in the denominator of $\left(\frac{3x}{2}\right)$ and this gives	10m T
	$1 + 12x + 126x^2 + 756x^3$. This could score B1M1A0A0.	
	Note + ${}^{8}C_{2}\left(1^{4} + \frac{3x}{2}\right)^{2} + {}^{8}C_{3}\left(1^{3} + \frac{3x}{2}\right)^{3} +$ would score M0 unless a correct method	
	was implied by later work	

		Vi de la companya de	M1
Question Number	Sch	neme	M. Maths
	S_ =	= 6 <i>a</i>	Clour
	$\frac{a}{1-r} = 6a$	Either $\frac{a}{1-r} = 6a$ or $\frac{6a}{1-r} = a$ or $\frac{6}{1-r} = 1$	M1 Com
2. (a)	$\{\Rightarrow 1 = 6(1-r) \Rightarrow\} r = \frac{5}{6}*$	CSO	A1*
	Allow verification e.g. $\frac{a}{1-r} = 6a$	$a \Rightarrow \frac{a}{1 - \frac{5}{6}} = 6a \Rightarrow \frac{a}{\frac{1}{6}} = 6a \Rightarrow 6a = 6a$	
	 		[2]
	$\left\{ T_4 = ar^3 = 62.5 \Rightarrow \right\} \ a \left(\frac{5}{6} \right)^3 = 62.5$	$a\left(\frac{5}{6}\right)^3 = 62.5 \text{ (Correct statement using the 4th term. Do not accept } a\left(\frac{5}{6}\right)^4 = 62.5$	M1
(b)	(0)	the 4 term. Do not accept $u = -62.5$	
	$\Rightarrow a = 108$	108	A1
			[2]
	$S_{\infty} = 6(\text{their } a) \text{ or } \frac{\text{their } a}{1 - \frac{5}{6}} \left\{ = 648 \right\}$	Correct method to find S_{∞}	M1
(c)	$\left\{S_{30} = \right\} \frac{108\left(1 - \left(\frac{5}{6}\right)^{30}\right)}{1 - \frac{5}{6}} \left\{ = 645.2701573 \right\}$	$M1: S_{30} = \frac{\left(\text{their } a\right)\left(1 - \left(\frac{5}{6}\right)^{30}\right)}{1 - \left(\frac{5}{6}\right)}$ (Condone invisible brackets around 5/6) A1ft: Correct follow through expression (follow through their a). Do not condone invisible brackets around 5/6 unless their evaluation or final answer implies they were intended.	M1 A1ft
	$\{S_{\infty} - S_{30}\} = 2.72984$	awrt 2.73	A1
	X		[4]
			Total 8
(c)	Alternative:		
	1- <i>r</i> A1: awrt 2.73		

Question Number	Scheme		Tynam Maths
3. (a)	$\sqrt{7}$ and $\sqrt{15}$	Both $\sqrt{7}$ and $\sqrt{15}$. Allow awrt 2.65 and 3.87	B1 [1]
(b)	Area $(R) \approx \frac{1}{2} \times 2; \times \left\{ \sqrt{3} + 2\left(\sqrt{7} + \sqrt{11} + \sqrt{15}\right) + \sqrt{19} \right\}$	(may be implied)	B1;
	Note decimal value	For structure of {}	<u>M1</u>
	$\frac{1}{2} \times 2; \times \left\{ \sqrt{3} + \sqrt{19} + 2\left(\sqrt{7} + \sqrt{11} + \sqrt{15}\right) \right\} =$		
	last y value and the second bracket to be multiplied remaining y values in the table with no addition copying error or is to omit one value from 2() to and the M mark can be allowed (nb: an extra representation). M0 if any values used are x values instead and Bracketing mistakes: e.g. $\left(\frac{1}{2} \times 2\right) \times \left(\sqrt{3} + \sqrt{19}\right) + 2\left(\sqrt{7} + \sqrt{11} + \sqrt{15}\right)$ $\left(\frac{1}{2} \times 2\right) \times \sqrt{3} + \sqrt{19} + 2\left(\sqrt{7} + \sqrt{11} + \sqrt{15}\right)$ Both score B1 M1 Alternative: Separate trapezia may be used, and this can be mark $\left[\frac{1}{2} \times 2(\sqrt{3} + \sqrt{7}) + \frac{1}{2} \times 2(\sqrt{7} + \sqrt{11}) + $	al values. If the only mistake is a bracket this may be regarded as a slip beated term, however, forfeits the M of y values.	
	B1 for $\frac{1}{2} \times 2$, M1 for correct structure		
	$= 1 \times 25.76166865 = 25.76166 = 25.76 $ (2dp)	<u>25.76</u>	A1 cao
(c)	underestimate	Accept 'under', 'less than' etc.	[3] B1
(-)		, 1000 0000	[1]
			Total 5

			MI A1
Question Number	Scheme	,	M. Maths
<u> </u>	$f(x) = -4x^3 + ax^2$	+9x-18	°C/0/1
	f(2) = -32 + 4a + 18 - 18 = 0	Attempts $f(2)$ or $f(-2)$	M1
4. (a)	$\Rightarrow 4a = 32 \Rightarrow a = 8$	11ttempts 1(2) of 1(2)	
	$\rightarrow 4u - 32 \rightarrow u - 0$	CSO	[2]
	$f(x) = (x-2)(px^2 + qx + r)$		-
	$= px^{3} + (q-2p)x^{2} + (r-2q)x - 2r$		
(a) Way 2	$r = 9 \Rightarrow q = 0$ also $p = -4$: $a = -2p = 8$	Compares coefficients leading to $-2p = a$	M1
	a = 8	cso	A1
	$\left(-4x^3 + ax^2 + 9x - 18\right) \div (x - 2)$		
(a) Way 3	$Q = -4x^{2} + (a-8)x + 2a - 7$ $R = 4a - 32$	Attempt to divide $\pm f(x)$ by $(x - 2)$ to give a quotient at least of the form $\pm 4x^2 + g(a)x$ and a remainder that is a function of a	M1
	$4a - 32 = 0 \Rightarrow a = 8$	cso	A1
	$f(x) = (x - 2)(-4x^2 + 9)$	Attempts long division or other method, to obtain $(-4x^2 \pm ax \pm b)$, $b \ne 0$, even with a remainder. Working need not be seen as this could be done "by inspection."	M1
(b)	= (x-2)(3-2x)(3+2x) or equivalent e.g. $= -(x-2)(2x-3)(2x+3)$ or $= (x-2)(2x-3)(-2x-3)$	dM1: A <i>valid</i> attempt to factorise their quadratic – see General Principles. This is dependent on the previous method mark being awarded, but there must have been no remainder. A1: cao – must have all 3 factors on the same line. Ignore subsequent work (such as a solution to a quadratic equation.)	dM1A1
			[3]
(c)	$f\left(\frac{1}{2}\right) = -4\left(\frac{1}{8}\right) + 8\left(\frac{1}{4}\right) + 9\left(\frac{1}{2}\right) - 18 = -12$	Attempts $f\left(\frac{1}{2}\right)$ or $f\left(-\frac{1}{2}\right)$ Allow A1ft for the correct numerical value of $\frac{\text{their } a}{4} - 14$	M1A1ft
			[2]
(c) Way 2	$\pm (-4x^3 + 8x^2 + 9x - 18) \div (2x - 1)$		
	$Q = -2x^2 + 3x + 6$ $R = -12$	M1: Attempt long division to give a remainder that is independent of x A1: Allow A1ft for the correct numerical value of $\frac{\text{their } a}{4}$ – 14.	M1A1ft
		4	Total 7

		n	M1A1 [2]
Question Number	Schem	ıe	M. Tallys Tallys
5(a)	Length $DEA = 7(2.1) = 14.7$	M1:7×2.1 only A1: 14.7	- M1A1
		May be seen on the diagram	[2]
	Angle $CBD = \pi - 2.1$	(allow awrt 1.0 and allow 180 – 120). Could score for sight of Angle <i>CBD</i> = awrt 60 degrees.	M1
(b)	Both $7\cos(\pi - 2.1)$ and $7\sin(\pi - 2.1)$ or Both $7\cos(\pi - 2.1)$ and $\sqrt{7^2 - (7\cos(\pi - 2.1))}$ or Both $7\sin(\pi - 2.1)$ and $\sqrt{7^2 - (7\sin(\pi - 2.1))^2}$ Or equivalents to these	A correct attempt to find BC and BD. You can ignore how the candidate assigns BC and CD . $1 \cos(\pi - 2.1)$ can be implied by awrt 3.5 and $1 \sin(\pi - 2.1)$ can be implied by awrt 6. Note if the sin rule is used, do not allow mixing of degrees and radians unless their answer implies a correct interpretation. Dependent on the previous method mark .	
	Note that 2.1 radians is 120 degrees (to 3sf degrees. If used this gives a correct per marks	rimeter of 31.3 and could score full	
	$P = 7\cos(\pi - 2.1) + 7\sin(\pi - 2.1) + 7 + 14.7$	their BC + their CD + 7 + their DEA Dependent on both previous method marks	ddM1
	= 31.2764	Awrt 31.3	A1
			[4]
			Total 6

			Ma Athsolog
Question Number	Scheme		Ma Mathe
	$\int \left(\frac{1}{8}x^3 + \frac{3}{4}x^2\right) dx = \frac{x^4}{32} + \frac{x^3}{4} \left\{+c\right\}$	M1: $x^n \to x^{n+1}$ on either term A1: $\frac{x^4}{32} + \frac{x^3}{4}$. Any correct simplified or un-simplified form. (+ c not required)	M1A1
	$\left[\frac{x^4}{32} + \frac{x^3}{4}\right]_{-4}^2 = \left(\frac{16}{32} + \frac{8}{4}\right) - \left(\frac{256}{32} + \frac{(-64)}{4}\right)$ or $\left[\frac{x^4}{32} + \frac{x^3}{4}\right]_{-4}^0 = \left(0\right) - \left(\frac{(-4)^4}{32} + \frac{(-4)^3}{4}\right) \text{ added to } \left[\frac{x^4}{32} + \frac{x^3}{4}\right]_{-4}^2 = \left(\frac{(2)^4}{32} + \frac{(2)^3}{4}\right) - \left(0\right)$		dM1
	Substitutes limits of 2 and -4 into an "integrated function" and subtracts either way round. Or substitutes limits of 0 and -4 and 2 and 0 into an "integrated function" and subtracts either way round and adds the two results.		
6.	$=\frac{21}{2}$	$\frac{21}{2}$ or 10.5	A1
	{At $x = -4$, $y = -8 + 12 = 4$ or at $x = 2$, $y = 1 + 3 = 4$ } Area of Rectangle = $6 \times 4 = 24$ or Area of Rectangles = $4 \times 4 = 16$ and $2 \times 4 = 8$		M1
	Evidence of $(42)\times$ their y_{-4} or $(42)\times$ their y_2		
	or Evidence of $4 \times$ their y_{-4} and $2 \times$ their y_2		
	So, area(R) = $24 - \frac{21}{2} = \frac{27}{2}$	dddM1: Area rectangle – integrated answer. Dependent on all previous method marks and requires: Rectangle > integration > 0 A1: $\frac{27}{2}$ or 13.5	dddM1A1
			[7] Total 7

		MAN. MY MARTINSCIO
<u>Alternative</u> :	1	Smathe
$\pm \int \text{"their 4"} - \left(\frac{1}{8}x^3 + \frac{3}{4}x^2\right) dx$	Line – curve. Condone missing brackets and allow either way round.	4 th M1
$=4x-\frac{x^4}{32}-\frac{x^3}{4}\left\{+c\right\}$	M1: $x^n o x^{n+1}$ on either curve term A1ft: " $-\frac{x^4}{32} - \frac{x^3}{4}$." Any correct simplified or un-simplified form of their curve terms, follow through sign errors. (+ c not required)	1 st M1,1 st A1ft
$\left[\right]_{-4}^{2} = \frac{\left(8 - \frac{16}{32} - \frac{8}{4}\right) - \left(-16 - \frac{256}{32} - \frac{(-64)}{4}\right)}{4}$	2 nd M1 Substitutes limits of 2 and -4 into an "integrated curve" and subtracts either way round. 3 rd M1 for ±("8"-"-16") Substitutes limits into the 'line part' and subtracts either way round. 2 nd A1 for correct ± (underlined expression). Now needs to be correct but allow ± the correct expression.	2 nd M1, 3 rd M1 2 nd A1
$=\frac{27}{2}$	A1: $\frac{27}{2}$ or 13.5	3 rd A1
If the final answer is -13.5 you can If -13.5 then "becomes" +13		

		42	Mark Sci
Question Number	Scher	eme	Mark
	$\frac{\sin 2\theta}{(4\sin 2\theta - 1)} = 1$	$0 \leqslant \theta < 180^{\circ}$	
	$\sin 2\theta = \frac{1}{3}$	$\sin 2\theta = k$ where $-1 < k < 1$ Must be 2 θ and not θ .	M1
	${2\theta = \{19.4712}$	I.	
7.(i)	$\theta = \{9.7356, 80.2644\}$	A1: Either awrt 9.7 or awrt 80.3 A1: Both awrt 9.7 and awrt 80.3	A1 A1
	Do not penalise poor accuracy more that work could see	ore M1A1A0	
	If <u>both</u> answers are correct in radia		
-	Extra solutions in range in an otherwise		+
	Extra solutions in range in an otherwise A1	•	
			[3]
	$5\sin^2 x - 2\cos x - 5 = 0, 0 \le x < 2\pi.$		
	$5(1-\cos^2 x) - 2\cos x - 5 = 0$	Applies $\sin^2 x = 1 - \cos^2 x$	M1
	$5\cos^2 x + 2\cos x = 0$ $\cos x (5\cos x + 2) = 0$	Cancelling out $\cos x$ or a valid attempt at solving the quadratic in $\cos x$ and	JN/1
	$\cos x(5\cos x + 2) = 0$ $\Rightarrow \cos x = \dots$	giving $\cos x = \dots$ Dependent on the previous method mark.	dM1
	awrt 1.98 or awrt 4.3(0)	Degrees: 113.58, 246.42	A1
(ii)	Both 1.98 and 4.3(0)	or their α and their $2\pi - \alpha$, where $\alpha \neq \frac{\pi}{2}$. If working in degrees allow 360 – their α	A1ft
-	awrt 1.57 or $\frac{\pi}{2}$ and 4.71 or $\frac{3\pi}{2}$ or 90° and 270°	These answers only but ignore other answers <u>outside</u> the range	B1
			[5]
	NB: $x = \operatorname{awrt} \left\{ 1.98, 4.3(0), \right.$	1.57 or $\frac{\pi}{2}$, 4.71 or $\frac{3\pi}{2}$	8
	e e e e e e e e e e e e e e e e e e e	ees: 113.58, 246.42, 90, 270 M1M1A0A1ftB1 (4/5)	U

Question	Sal	neme	Marks
Number			THURS
	$y\log 5 = \log 8$	= 8	N/I
		$y\log 5 = \log 8 \text{ or } y = \log_5 8$	M1
8. (i)	$\left\{ y = \frac{\log 8}{\log 5} \right\} = 1.2920$	awrt 1.29	A1
_	Allow correct	et answer only	
	$\log_2(x+15)$	$-4 = \frac{1}{2}\log_2 x$	[2]
	$\log_2(x+15) - 4 = \log_2 x^{\frac{1}{2}}$	Applies the power law of logarithms seen at any point in their working	M1
	$\log_2\left(\frac{x+15}{x^{\frac{1}{2}}}\right) = 4$	Applies the subtraction or addition law of logarithms at any point in their working	M1
	$\left(\frac{x+15}{x^{\frac{1}{2}}}\right) = 2^4$	Obtains a correct expression with logs removed and no errors	M1
(ii)	$x - 16x^{\frac{1}{2}} + 15 = 0$ or e.g. $x^2 + 225 = 226x$	Correct three term quadratic in any form	A1
(=)	$(\sqrt{x}-1)(\sqrt{x}-15)=0 \Rightarrow \sqrt{x}=$	A valid attempt to factorise or solve their three term quadratic to obtain $\sqrt{x} =$ or $x =$ Dependent on all previous method marks.	ddd M1
	$\left\{ \sqrt{x}=1,15\right\}$		
	x=1, 225	Both $x = 1$ and $x = 225$ (If both are seen, ignore any other values of $x \le 0$ from an otherwise correct solution)	A1
			[6] Total 8
	Altan		10tal o
		$\frac{\text{native:}}{(1) - 8 = \log_2 x}$	
	- \	Applies the power law of logarithms	M1
	$\log_2(x+15)^2 - 8 = \log_2 x$ $\log_2\left(\frac{(x+15)^2}{x}\right) = 8$	Applies the subtraction law of logarithms	M1
	$\frac{(x+15)^2}{x} = 2^8$	Obtains a correct expression with logs removed	M1
	$x^2 + 30x + 225 = 256x$		
	$x^2 - 226x + 225 = 0$	Correct three term quadratic in any form	A1
	$(x-1)(x-225) = 0 \Rightarrow x =$	A valid attempt to factorise or solve their 3TQ to obtain $x =$ Dependent on all previous method marks.	dddM1
	x=1, 225	Both $x = 1$ and $x = 225$ (If both are seen, ignore any other values of $x \le 0$ from an otherwise correct solution)	A1

		nn	1. A. 1.
Question Number	Sche	eme	J. Math.
9. (a)	${A = } xy + \frac{\pi}{2} \left(\frac{x}{2}\right)^2 + \frac{1}{2}x^2 \sin 60^\circ$	M1: An attempt to find 3 areas of the form: xy , $p\pi x^2$ and qx^2 A1: Correct expression for A (terms must be added)	M1A1
	$50 = xy + \frac{\pi x^2}{8} + \frac{\sqrt{3} x^2}{4} \implies y = \frac{50}{x} - \frac{1}{x}$ Correct proof with	ν τ <u>ν</u> υ	A1 *
			[3]
	$\left\{P=\right\}\frac{\pi x}{2} + 2x + 2y$	Correct expression for <i>P</i> in terms of <i>x</i> and <i>y</i>	B1
	$P = \frac{\pi x}{2} + 2x + 2\left(\frac{50}{x} - \frac{x}{8}(\pi + 2\sqrt{3})\right)$	Substitutes the given expression for y into an expression for P where P is at least of the form $\alpha x + \beta y$	M1
(b)	$P = \frac{\pi x}{2} + 2x + \frac{100}{x} - \frac{\pi x}{4} - \frac{\sqrt{3}}{2}x$	$\Rightarrow P = \frac{100}{x} + \frac{\pi x}{4} + 2x - \frac{\sqrt{3}}{2}x$	
	$\Rightarrow P = \frac{100}{x} + \frac{x}{4} \left(\pi + 8 - 2\sqrt{3} \right)$	Correct proof with no errors seen	A1 *
	(Note $\frac{\pi + 8 - 2\sqrt{4}}{4}$	$\frac{\sqrt{3}}{}$ = 1.919)	[3]
	$\frac{dP}{dx} = -100x^{-2} + \frac{\pi + 8 - 2\sqrt{3}}{4}$	M1: Either $\mu x \to \mu$ or $\frac{100}{x} \to \frac{\pm \lambda}{x^2}$ A1: Correct differentiation (need not be simplified). Allow $-100x^{-2} + (awrt1.92)$	M1A1
	$-100x^{-2} + \frac{\pi + 8 - 2\sqrt{3}}{4} = 0 \Rightarrow x = \dots$	Their $P' = 0$ and attempt to solve as far as $x = \dots$ (ignore poor manipulation)	M1
(c) and	$\Rightarrow x = \sqrt{\frac{400}{\pi + 8 - 2\sqrt{3}}} = 7.2180574$	$\sqrt{\frac{400}{\pi + 8 - 2\sqrt{3}}}$ or awrt 7.2 and no other values	A1
(d) can be	${x = 7.218} \Rightarrow P = 27.708 (m)$	awrt 27.7	A1
marked			[5]
together	$\frac{\mathrm{d}^2 P}{\mathrm{d}x^2} = \frac{200}{x^3} > 0 \implies \text{Minimum}$	M1: Finds $P''(x^n \to x^{n-1})$ allow for constant $\to 0$) and considers sign A1ft: $\frac{200}{x^3}$ (need not be simplified) and > 0 and conclusion. Only follow through on a correct P'' and a single positive value of x found earlier.	M1A1ft
			[2]
			Total 13

		h	my y
Question	Sch	neme	M Agens
Number 10(a)	$A\left(\frac{-9+15}{2}, \frac{8-10}{2}\right) = A(3,-1)$	M1: A correct attempt to find the midpoint between <i>P</i> and <i>Q</i> . Can be implied by one of <i>x</i> or <i>y</i> -coordinates correctly evaluated. A1: (3, -1)	MIA1
	$(2.2)^2 (0.1)^2 =$	$r \sqrt{(-9-3)^2 + (8+1)^2}$	[2]
(b)	Uses Pythagoras correctly in order to fine the radius and may be imp $(15+9)^2 + (-10-8)^2 \text{ or}$ Uses Pythagoras correctly in order to fine as the diameter and may be in This mark can be implied by just 30 clear as the radius (may be seen or a Allow this mark if there is a correct	or $\sqrt{(15-3)^2 + (-10+1)^2}$ and the radius . Must clearly be identified as oblied by their circle equation. Or $ \sqrt{(15+9)^2 + (-10-8)^2} $ of the diameter . Must clearly be identified implied by their circle equation. The radius of the diameter or 15 clearly seen implied in their circle equation) statement involving the radius or the must be seen in (b)	M1
	$(x-3)^2 + (y+1)^2 = 225 \left(\text{or} \left(15 \right)^2 \right)$	$(x \pm \alpha)^2 + (y \pm \beta)^2 = k^2$ where $A(\alpha, \beta)$ and k is their radius.	M1
l	$(x-3)^2 + (y+1)^2 = 225$	Allow $(x-3)^2 + (y+1)^2 = 15^2$	A1
	Accept correct	ct answer only	
	Altomotivo using "2	2 2 2 . 0	[3]
	Uses $A(\pm \alpha, \pm \beta)$ and x	$x^{2} + 2ax + y^{2} + 2by + c = 0$ $x^{2} + 2ax + y^{2} + 2by + c = 0$ $x^{2} + 2(1)y + c = 0$	M1
	Uses P or Q and x^2 +	$ + 2ax + y^{2} + 2by + c = 0 $ $ + 2(1)(8) + c = 0 \Rightarrow c = -215 $	M1
	* * * * * * * * * * * * * * * * * * * *	+2y-215=0	A1
(c)	Distance = $\sqrt{15^2 - 10^2}$	$= \sqrt{(\text{their } r)^2 - 10^2} \text{ or a correct method}$ for the distance e.g. $\text{their } r \times \cos\left[\sin^{-1}\left(\frac{10}{\text{their } r}\right)\right]$	M1
	$\left\{=\sqrt{125}\right\} = 5\sqrt{5}$	$5\sqrt{5}$	A1
			[2]

		n	M. Mathson
Question Number		Scheme	Maths
(d)	$\sin\left(A\widehat{R}Q\right) = \frac{20}{30} \text{ or}$ $A\widehat{R}Q = 90 - \cos^{-1}\left(\frac{10}{15}\right)$ $A\widehat{R}Q = 41.8103$	$\sin\left(A\widehat{R}Q\right) = \frac{20}{(2 \times \text{their } r)} \text{ or } \frac{10}{\text{their } r}$ or $A\widehat{R}Q = 90 - \cos^{-1}\left(\frac{10}{\text{their } r}\right)$ or $A\widehat{R}Q = \cos^{-1}\left(\frac{\text{Part}(c)}{\text{their } r}\right)$ or $A\widehat{R}Q = \cos^{-1}\left(\frac{\text{Part}(c)}{\text{their } r}\right)$ or $20^2 = 15^2 + 15^2 - 2 \times 15 \times 15 \cos(2ARQ)$ or $15^2 = 15^2 + \left(10\sqrt{5}\right)^2 - 2 \times 15 \times 10\sqrt{5}\cos(ARQ)$ A fully correct method to find $A\widehat{R}Q$, where their $r > 10$. Must be a correct statement involving angle ARQ awrt 41.8	M1
	711Q = +1.0103	WILL II.O	[2]
			Total 9

Mun. My Maths Cloud Com